2-ETHOXY-5,6-DIHYDRO-1,3-OXAZINES FROM TRIETHYL AZOMETHINETRICARBOXYLATE

H.K. Hall, Jr.*, Diana L. Miniutti

Department of Chemistry, University of Arizona, Tucson, AZ 85721, USA.

Abstract: Inverse demand Diels-Alder reactions of triethyl azomethinetricarboxylate with electron-rich olefins lead to 2-ethoxy-5,6-dihydro-1,3-oxazines using the C=N-C=O moiety as the diene only.

The formation of 6-alkoxy-3,4-dihydropyrans from reactions of electron-rich olefins with substituted unsaturated esters was recently reported. 1,2 The analogous 6-alkoxy-dihydrooxadiazine compound was found in a reaction of diethyl azodicarboxylate and 1,2-dimethoxyethene. 3 The reactions are believed to proceed through a Diels-Alder reaction with inverse electron demand using a carbonyl group adjacent to the double bond as part of the diene. J. Hall and coworkers have reported the formation of dihydrooxadiazines from reactions of electron-rich olefins with azodiones or azodicarboxylates, either through a polar intermediate or by a concerted Diels-Alder reaction.4 In an attempt to investigate an intermediate class of compounds, imines, we looked at the reactions of triethyl azomethinetricarboxylate (TEI) with electron-rich olefins. Earlier, this compound was found to react as a dienophile in a normal Diels-Alder reaction with other diene systems under stringent conditions.5

We present here results showing that 2-ethoxy-5,6-dihydro-1,3-oxazine derivatives are formed and isolated in the reactions of TEI with electron-rich olefins (R_5 =H or CH3, R_6 =OEt or Aryl), at room temperature. In a typical experiment, a mixture of 0.36g (1.47 mmol) TEI and $0.2\,$ mL $(2\,$ mmol) ethyl vinyl ether in 1 mL CDCl3 was left at room temperature for 3 hours. The solvent was removed by vacuum and the residue was flash distilled in a Kugelrohr apparatus. Recrystallization from a chloroform/ether mixture yielded pure diethyl

E=COOEt

2,6-diethoxy-5,6-dihydro-4H-1,3-oxazine-4,4-dicarboxylate (m.p. 34-36°). Products are characterized by IR and 1H and 13C NMR (Table 1).

Stereochemistry and the overall conformation can be assigned based on the coupling constants obtained for H-5 and H-6. The Karplus equation dictates large coupling constants for diaxial vicinal hydrogens.⁶ These are observed for the aryl-substituted adducts (4-5). The small coupling constants in the vinyl ether adducts (1-3), indicate that the ethoxy group is in the axial position, due to the anomeric effect.⁷ Derivative 2 is observed and isolated as only one isomer in which the cis propenyl ethyl ether stereochemistry is retained, suggesting a concerted mechanism.

In the TEI molecule, two possible diene systems can be employed in the cycloaddition reaction, C=N-C=O or O=C-C=N. The 13 C NMR data indicates only the former diene is involved in the inverse Diels-Alder reaction. The quaternary carbons, C-2 and C-4, are found at dramatically different chemical shifts. C-2, found in the 152-154 ppm range, is greatly influenced by the adjacent heteroatoms and the double bond, while C-4 is influenced only by one heteroatom and is found in the 65-68 ppm range. In $\underline{1}$ and $\underline{2}$, C-6 corresponds to a dioxygenated carbon of an acetal and is expected in the 88-112 ppm range, $\underline{6}$ whereas in $\underline{4}$, C-6 is found further upfield (75 ppm) due to the aromatic ring.

These reactions are not entirely without precedent.8,9,10,11 Akiyama reports the first case of an anhydrochloralurethane functioning as a diene in a cycloaddition reaction with ketene acetals.¹² The reaction is believed to proceed via a Diels-Alder reaction with inverse electron demand, first forming the unstable 1,3-oxazine derivative and then hydrolyzing to form a carbamate derivative. N-(2,2,2-trichloroethylidene)acetamide has been found to undergo both normal and inverse Diels-Alder reaction with 2,3-dimethylbutadiene.¹³

Table I

	Chara	cteris	stic ^l H NM	Characteristic $^{ m l}$ H NMR Data (CDC13, TMS) $^{ m a}$	13, TMS)a				IR	Yield ^b	Characteristí	ic 13c nmr	Characteristic $^{13}\mathrm{C}$ NMR Data $^\mathrm{C}$ (CDCl $_3$)
Compound	Sub	Substituents	ents	Chemical Shift [§] (ppm)	Shift om)	Coup1	Coupling Constants Hz	ants	C=N	%	Chemical	Chemical Shift, & (ppm) carbon number	(mdd)
<u></u>	R51	R6 1	R6	н5/н5,	9 _H	Н6Н5	н6н51		cm-1		2 (s) ^d	2 (s) ^d 4 (s) 6 (d)	(p) 9
1	Ξ	OEt	æ	2.4(dd)	5.3(dd) 4	4	4		1675	26	152.7	65.84	98.2
2	CH3	OEt	н	2.77(dd)	5.3(4)	3			1660	86	151,8	89.89	100.3
ю	-сн2С	-сн2сн20-	Н	2.77(m)	5.93(d)	4			1	(61)	1	1	}
						Н6 1 Н5	H6'H5 H6'H5' H5'H5	5 'H5					
4	Ħ	ж	ф-р-осн3	2.67(dd) 2.00(dd)	5.15(dd) 12	12	2	14	1650	(83)	154.4	90*99	75.39
S	Ħ	=	ф-р-сн3	2.71(dd) 1.95(dd)	5.3(dd) 10	10	7	14	1660		}	1	1

a Spectra determined on a Varian T-60 spectrometer.

Reactions of TEI and vinyl ethers proceed at room temperature over a 4-6 hour time period, whereas the styrene derivatives react very slowly at room temperature (2-4 weeks, > 50% yield). byields reported between brackets are calculated by 1H NMR, based on TEI as the limiting reagent.

c Spectra determined on a Brucker WM-90 MHz spectrometer.

dOff resonance data.

In summary, TEI acts as a regioselective diene (C=N-C=O) with electron-rich olefins, in a Diels-Alder type reaction with inverse electron demand.

Acknowledgment: We thank the Petroleum Research Fund of the American Chemical Society, Grant Number 14596-AC7-C, for financial support.

References

- 1. Hall, H.K., Jr., H.A.A. Rasoul, M. Gillard, M. Abdelkader, P. Nogues, and R.C. Sentman, Tetrahedron Lett. 1982, 603.
- 2. Padias, A.B., S.T. Hedrick, and H.K. Hall, Jr., J. Org. Chem. 1983, 48, 3787.
- Von Gustorf, E.K., D.V. White, B. Kim, D. Hess and J. Leitich, J. Org. Chem. 1970, 35, 1155.
- 4. Hall, J.H., M.L. Jones, J. Org. Chem. 1983, 48, 822, and references therein.
- 5. Bruck, D.V.D., R. Buhler, and H. Plieninger, Tetrahedron Lett. 1972, 28, 791.
- 6. Silverstein, R.M., G.C. Bassler, T.C. Morrill, Spectrometric Identification of Organic Compounds, 4th ed., Wiley & Sons, New York, 1981.
- 7. Lemieux, R.U., Pure & Appl. Chem. 1971, 25, 527.
- 8. Desimoni, G. and G. Tacconi, Chem. Rev. 1975, 75, 651.
- 9. Schmidt, R.R., Synthesis 1972, 333.
- 10. Kato, T., Heterocycles 1980, 14, 1333.
- 11. Gambaryan, N.P. and Y.V. Zeifman, Bull. Acad. Sci. USSR Chem. Sci. Div. 1969, 9, 1915.
- 12. Akiyama, T., N. Urasato, T. Imagawa, and M. Kawanisi, Bull. Chem. Jpn. 1976, 49, 1105.
- 13. Arbuzov, Y.A., E.I. Klimova, N.D. Autonova, and Y.V. Tomilov, Zh. Org. Khim. 1974, 10, 1164.

(Received in USA 5 December 1983)